翻訳と辞書
Words near each other
・ Distort Entertainment
・ Distort Yourself
・ Distorted
・ Distorted (album)
・ Distorted (disambiguation)
・ Distorted (EP)
・ Distorted Circuitry
・ Distorted Ghost
・ Distorted Harmony
・ Distorted Humor
・ Distorted Lullabies
・ Distorted Music Festival
・ Distorted octahedral molecular geometry
・ Distorted Pony
・ Distorted Reality
Distorted Schwarzschild metric
・ Distorted thread locknut
・ Distorted vision
・ Distortia
・ Distorting mirror
・ Distortion
・ Distortion (disambiguation)
・ Distortion (economics)
・ Distortion (Forbidden album)
・ Distortion (Game Theory EP)
・ Distortion (Joseph Simmons album)
・ Distortion (mathematics)
・ Distortion (music)
・ Distortion (optics)
・ Distortion (The Magnetic Fields album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Distorted Schwarzschild metric : ウィキペディア英語版
Distorted Schwarzschild metric
The distorted Schwarzschild metric refers to the metric of a standard/isolated Schwarzschild spacetime exposed in external fields. In numerical simulation, the Schwarzschild metric can be distorted by almost arbitrary kinds of external energy–momentum distribution. However, in exact analysis, the mature method to distort the standard Schwarzschild metric is restricted to the framework of Weyl metrics.
==Standard Schwarzschild as a vacuum Weyl metric==

All static axisymmetric solutions of the Einstein-Maxwell equations can be written in the form of Weyl's metric,〔Jeremy Bransom Griffiths, Jiri Podolsky. ''Exact Space-Times in Einstein's General Relativity''. Cambridge: Cambridge University Press, 2009. Chapter 10.〕


(1)\quad ds^2=-e^dt^2+e^(d\rho^2+dz^2)+e^\rho^2 d\phi^2\,,


From the Weyl perspective, the metric potentials generating the standard Schwarzschild solution are given by〔〔R Gautreau, R B Hoffman, A Armenti. ''Static multiparticle systems in general relativity''. IL NUOVO CIMENTO B, 1972, 7(1): 71-98.〕


(2)\quad \psi_=\frac\ln\frac\,,\quad \gamma_=\frac\ln\frac\,,
where


(3)\quad L=\frac\big(l_+ + l_- \big)\,,\quad l_+ =\sqrt\,,\quad l_- =\sqrt\,,
which yields the Schwarzschild metric in ''Weyl's canonical coordinates'' that


(4)\quad ds^2=-\fracdt^2+\frac(d\rho^2+dz^2)+\frac\,\rho^2 d\phi^2\,.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Distorted Schwarzschild metric」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.